Comparative waterfootprint profile of vegetable oils for biodiesel production

Carla Caldeira¹, Paula Quinteiro², Erica Castanheira¹, Ana C. Dias² Luís Arroja², Fausto Freire¹

1: Center for Industrial Ecology, ADAI-LAETA Dept. of Mechanical Engineering
University of Coimbra

2: Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning
University of Aveiro

carla.caldeira@dem.uc.pt

1. GOAL AND SCOPE

- Waterfootprint profile (water consumption and water degradability) assessment of four different vegetable oils used for biodiesel production following the ISO 14046 guidelines
- Compare two methods to assess water consumption: WSI (Pfister et al. 2009;
 Pfister & Ridoutt 2013)) and AWARE (Boulay et al. 2015)
- Comparison of 4 alternative feedstocks for biodiesel: rapeseed, soybean, palm and waste cooking oil (Functional unit: 1 kg of oil)
- Addressing cultivation in different countries
- The results will be used by a biodiesel producer to support decision planning on the selection of "oil blends" for biodiesel production

1. GOAL AND SCOPE

System Boundaries

1. GOAL AND SCOPE

Impact categories

- Eutrophication (Recipe)
- Acidification (Impact 2002 +)
- Ecotoxicity (Usetox)
- Human toxicity (Usetox)

Water degradability

Multifunctionality

Energy allocation (Renewable Energy Directive approach)

General assumptions

- No infraestructures
- No specific agricultural activities/ general process for diesel agricultural machinary
- Transportation of chemicals and materials not included
- Transportation Seeds/beans/oil /WCO collection included

2. LIFE-CYCLE INVENTORY

STAGE	DATA SOURCE
CULTIVATION	(1) Pfister, S., Bayer, P., 2014. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62
	(2) Malça, J., Coelho, A., Freire, F., 2013. Environmental Life-Cycle Assessment of Rapeseed-Based Biodiesel: Alternative Cultivation Systems and Locations. Appl. Energy.
	(3) Castanheira, É.G., Acevedo, H., Freire, F., 2014. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios. Appl. Energy 114, 958–967
	(4) Castanheira, É.G., Freire, F., 2013. Greenhouse gas assessment of soybean production: Implications of land use change and different cultivation systems. J. Clean. Prod. 54, 49–60
	(5) Castanheira, É.G., Grisoli, R., Coelho, S., Anderi da Silva, G., Freire, F., 2015. Life-cycle assessment of soybean-based biodiesel in Europe: comparing grain, oil and biodiesel import from Brazil. J. Clean. Prod. 102, 188–201.
	(6) Ecoinvent database
EXTRACTION	(2) (3) (4) (5) (6)
TRANSPORTATION	
WCO COLLECTION	(7) Caldeira C., Queirós J., Freire F., 2015. Biodiesel from Waste Cooking Oils in Portugal: alternative collection systems. Waste and Biomass Valorization 6, 771–779.
PRE-TREATMENT	(2) (3) (4) (5) (6) (7)

3. IMPACT ASSESSMENT – WATER SCARCITY

7

3. IMPACT ASSESSMENT – WATER SCARCITY

Sensitivity analysis on the background CF – RER or RoW

3. IMPACT ASSESSMENT – WATER QUALITY RELATED IMPACTS

Eutrophication and Acidification

Marine eutrophication

Virgin Oils

Cultivation stage

WCO

Collection

Feedstocks with higher impacts **WATER** Rapeseed_SP **WSI/AWARE** Soya AR Rapeseed FR CONSUMPTION **Freshwater** Rapeseed US Soya Br Soya AR eutrophication Marine **WATER QUALITY** Rapeseed US Rapeseed FR Rapeseed SP eutrophication RELATED IMPACTS Aquatic Rapeseed_SP Rapeseed_US Rapeseed_CN **Acidification** Cultivation Cultivation

 Impacts in water quality of the cultivation stage are due to the fertilizers use (Phosphates – FE; Ammonia and Nitrates, Nitrogen fertilizers – ME; Ammonia and Ammonium nitrate – AA)

5. MAIN CONCLUSIONS

- Both methods (WSI and AWARE) used to address water scarcity provide the same conclusions
- The higher water scarcity impact was calculated for Rapeseed _Sp
- The higher water degradability impacts was calculated for Rapeseed_US
- Cultivation is the stage that contibutes the most to water scarcity and water degradability

THANK YOU!

carla.caldeira@dem.uc.pt

universidade de aveiro centro de estudos do ambiente e do map