Agenda

- Outcome of Barcelona
- Next steps
- Remaining modelling decisions
- Uncertainty
- Communication / name
Outcome of Barcelona
- General positive outcome of presentation and Flagship meeting
- Comments on clarity of explanation (include area related meaning)
- Include desalinated water?
- Misunderstanding of the word “fair”
- UNEP is impressed of the progress and confident in the robustness (Llorenç Mila-i-Canals)
- Concern on relation developed / developing countries
- Anything else?
Next Steps

- Finalize Calculations (and some modeling choices)
- Make available online (Google Earth Layer and excel document for country values) along with simple explanatory text
- Case study with Flagship project + testing phase
- Draft paper – submission by Oct/Nov (AMB to send draft out to the group by August 28th)
- Training at LCM and LCAXV (tbc)
- CILCA conference, Expo Milan conference
Remaining modelling decisions

Range (Message from Brad)
- For regions where indicator > 100, lack of incentive to reduce inventory (→ no difference in water footprint)

Regions with range between 100-1000 all year (red) or partly (yellow)
Remaining modelling decisions

Cascade Effect
- Compiled indicator of actual ws + downstream ws
- Philippe Loubet currently seeing if this is possible to integrate
- Relevance? Meaning? Inclusion or not?
Inclusion of cascade effect at sub watershed level

- CF of a sub watershed => Cascade effect of a consumption on the downstream sub ws
 - Weighted sum of the CF of downstream sub watersheds

\[
CF_{WD,i} = \frac{1}{p \cdot N_{down}} \sum_{j=i}^{n} (CTA_j \cdot p_j)
\]

Weighting parameter

Loubet et al. 2013
Inclusion of cascade effect at sub watershed level

Figure 4. Sub-river basins CF_{WD} ($p = \text{area}$) and CTA of the Guadalquivir river basin (Spain): Numbers give the simplified SRB coding (idxx) from the Pfafstetter system (two last digits) and the CF_{WD}.

Loubet et al. 2013
Remaining modelling decisions

Greenland / Polar Regions
- Absolute availability \((m^3/m^2) \) is order of \(x10^{-4} \), world average is \(x10^{-2} \), and Sahara/Australia is \(x10^{-3} \)
- Precipitations are low (see map next slide)
- Evapotranspiration / sublimation ?
- *Climatic data is uncertain (see map)*
- Lower relevance of water availability models in icy regions
Precipitation / polar regions modeling
Climate data stations / polar regions

Leave as white / ND?
Remaining modelling decisions

Desalinated water

- Add to calculation (subtract from human consumption)
- Data is expensive (>2000$)
- CIRAIG had purchased one report, provides total volume desalinated (maximal capacity) per country)
Uncertainty

-Potentially one student at CIRAIG for uncertainty calculation
-Other support? Who wants to lead this task?
- Uncertainty information for WaterGap?
- EWR uncertainty to be provided by Amandine (1 – 2 sd)
Available WAter REMaining = AWARE ?

Relative User Deprivation Potential = Water consumption (inventory) \times \frac{1}{Unused \text{ water remaining}} \rightarrow CF
Any other business?